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As a newly developed coherent diffraction-imaging (CDI) imaging method, the ptychographical iterative engine not
only can bypass the difficulty of having high-quality optics in x-ray microscopy by a numerical reconstruction algo-
rithm, but also has obvious advantages on traditional CDI methods in both converging speeds and view fields. How-
ever, like in the other CDI methods, the reconstruction of the image from the intensity data of a weakly diffracting
specimen is still difficult because of the low signal to noise ratio. To improve this situation, a modification to
the currently used algorithms is suggested to double the presence of high spatial frequencies in the diffraction
pattern and accordingly to enhance the contrast and fine details of the reconstructions. The simulation and experi-
mental results are presented, and the results can be extended to other CDI methods also. © 2012 Optical Society of
America
OCIS codes: 100.3190, 100.5070, 110.3010, 180.0180.

Recent advances in transmission microscopy have led
to the evolution of a “lensless” technique for 2-, and 3-
dimensional reconstruction of the image of nanoscale
structures such as proteins, nanotubes, nanocrystals,
and defects. The technique is widely referred to as coher-
ent diffractive imaging (CDI) [1–5]. In this method, the
objective lens is removed and a detector is placed in
the far-field. Then it is still possible to calculate the object
structure via certain iterative phase retrieval algorithms
despite the loss of phase information in the recorded data
[2–6]. This is the basic principle of CDI algorithm.
Theoretically, CDI allows one to obtain the resolution
ultimately limited only by the wavelength of radiation
used and not by the optics quality. Due to this outstand-
ing advantage, CDI has become an important re-
search topic in the field of imaging with x-rays and
electrons [6–8].
The traditional CDI method suffers from the disadvan-

tages in view field, converging speed, and reliability. To
overcome these disadvantages, Rodenburg proposed the
PIE ptychographical iterative engine (PIE) algorithm,
which uses a Wegener filter like algorithm to reconstruct
the image iteratively from a set of diffraction patterns
[9–12]. By combing the advantages of CDI and traditional
phychography algorithms, PIE has much faster conver-
ging speed and wider view field than the common CDI
method. By now PIE has achieved great progress in ima-
ging with light, x-rays, and electrons. Like the common
CDI method, one important advantage of PIE lies on its
ability to measure the phase distribution directly from
the far-field diffraction patterns. However, for weakly dif-
fraction samples, the contrast of the reconstructed phase
image is very low, and it is difficult to observe fine details
in the specimen’s structure due to the noise presence.
Thus, exploring new methods to enhance the image con-
trast becomes very meaningful. In this paper we suggest
the use of divergent light beams for the illumination in
the data recording process and a modified PIE algorithm
for the image reconstruction to get a remarkable contrast
enhancement. The results obtained can also be extended
to other CDI techniques.

The optical setup for the PIE technique is schemati-
cally shown in Fig. 1. The specimen with a transmission
function q�r� is fixed on a translation stage and is illumi-
nated by a complex-valued illuminating probe wave
front. We can also define the wave exiting the specimen
as ψe�r; R� � q�r�P�r − R� which is indeed an overlap of
specimen transmission function and probe function. For
both x-ray and electron microscopy, the wavelength is
quite small, for example the wavelength of a 200 kV elec-
tron is 0.025 Å. In most of the real experiments, the dis-
tance between the CCD array and the sample is about
10 cm, and the CCD always records the Fraunhofer dif-
fraction of the sample. The recorded intensity, I�k� is the
square of the Fourier transform of the ψe�r; R�, that is,
I�k� � jFFT�ψe�r; R��j2, where k is the reciprocal space
coordinates of the real-space coordinate r, and the fast
Fourier transform. This is the reason why the CCD is
placed on the back focal plane of a lens in Fig. 1 to record
the diffraction patterns.

The far-field intensities are recorded for different sam-
ple-to-probe positions shifted by a vector R. The phase
retrieval is started with a random guess for the transmis-
sion function q�r�. The detailed iteration reconstruction
procedure can be found in [9]. Since the diffraction pat-
tern is obtained by the interference between the zero-
order beam A0�k� and the diffracted beam Ad�k�, we
can rewrite intensity of the diffraction pattern as

I�k��jA0�k��Ad�k�j2

�jA0�k�j2�2jA0�k�jjAd�k�jcos�φ�k���jAd�k�j2: (1)

The phase difference between the zero-order beam and
the diffraction beam is φ�k�. If we assume the phase

Fig. 1. Schematic diagram of the optical setup.
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of the zero-order beam is zero, then φ�k� is the phase of
the diffracted beam. Mathematically, recording the dif-
fraction patterns in the far-field plane is essentially the
decomposition of the object wave into different spatial
frequency components, and the reconstruction process
involves the recombination of different spatial compo-
nents in the real space. The existing PIE algorithm uses���������
I�k�

p
for the iterative reconstruction. However, our

modified PIE algorithm considers the intensity I�k� for
the reconstruction. For a weakly scattering object, the
zero-order beams are much stronger than the diffracted
beams. This means jAd�k�j ≪ jA0�k�j and jAd�k�j ∕
jA0�k�j ≈ 0. Squaring Eq. (1) and applying these approx-
imations, we obtain

I2�k� � jA0�k�j2jA0�k� � 2Ad�k�j2: (2)

By doing so we get a reconstruction intensity propor-
tional to A0�k� � 2Ad�k�. Here the strength of diffracted
beam Ad�k�, which indicates high spatial-frequency com-
ponents of the object wave, is doubled relative to the
zero-order beam, then the contrast of the reconstruction
would be remarkably increased, and the fine details of
specimen would be enhanced. To show this clearly,
we draw the vectors A0�k� � Ad�k� and A0�k� � 2Ad�k�
in the complex plane (Fig. 2). We assume that the polar
angle of the zero-order component is zero, and the polar
angle of Ad�k� is assumed to be φ�k�. It is obvious that
A0�k� � 2Ad�k� has a longer vector length and a larger
polar angle. This means that the reconstruction with
the above discussed method will result in a large phase
range. Such a large phase range is more desirable since
the probe diffraction pattern gets modified only slightly
by the weakly diffracting specimen. This method makes
the phase change very conspicuous, leading to a better
contrast and visual information of the specimen.
The validity of the above analysis is verified by a nu-

merical simulation and experiment. Figure 3(a) is the
phase transmit function of a pure phase object chosen
for simulation. Figure 3(b) is the intensity of the far-field
diffraction patterns calculated. Since divergent illumina-
tion is used and the object is quite weakly diffracting, the
zero-order beam irradiates a remarkable portion of
the area in Fig. 3(b). This is in fact required to make the
assumption that jAd�k�j ≪ jA0�k�j. To simulate a real ex-
perimental situation, some random noise (e.g., dark cur-
rent noise of CCD) is added to the diffraction pattern.
Figure 3(c) is the reconstruction with common PIE
method, using the square root of intensity obtained in
Fig. 3(b). We can find that the structural information of
the object is lost in the dominant noise. Figure 3(d) is the
image reconstructed with our modified algorithm and it
shows the phase structure of Fig. 3(a). We can find that it

is difficult to reconstruct the weak phase object with the
square root of intensity patterns because of the noise
added, while the modified algorithm we have suggested
faithfully reproduced the structures of the object. This
result matches our above analysis well and demonstrates
a higher degree of noise tolerance.

Using the same method in deducing Eq. (2), we can get
In�k� ≈ jA0�k�jnjA0�k� � nAd�k�jn, n � 2; 3; 4…. In theory,
we can then do the reconstruction by using the n power
of the modulus of the recorded data �

���������
I�k�

p
�n to further

enhance the image contrast. However, this does not
mean that the contrast can be strengthened infinitely be-
cause while the diffraction beam changes from Ad�k� to
2Ad�k�, 3Ad�k� etc., it becomes closer to A0�k� in inten-
sity, and then as a result, the requirement jAd�k�j ≪
jA0�k�j in Eq. (2) will not be fulfilled.

The experimental results are shown in Fig. 4. The ob-
ject used is a fixed biological sample (corn stem cross-
cut), and its phase distribution is quite weak. In the
experiment the diffraction patterns I�k� are recorded
with the setup of Fig. 1. Figure 4 shows both phase image
and corresponding intensity images reconstructed from���������
I�k�

p
, I�k�, and �

���������
I�k�

p
�3, respectively. From Fig. 4,

we can find that almost no useful structural information
of the object can be identified from the reconstructed
phase image with

���������
I�k�

p
. When making the reconstruc-

tion with the modified algorithm however, the image con-
trast obviously becomes better and the fine structures of
the sample are remarkably enhanced. It is clear that our
proposed PIE algorithm results in a better contrast and
edge detection compared to the standard PIE techniques
which use

���������
I�k�

p
for the reconstruction.

Fig. 2. Vectors A0�k� � Ad�k� and A0�k� � 2Ad�k� in the
complex plane.

Fig. 3. Numerical simulation results. (a) The phase
transmission of the object; (b) the diffraction pattern; (c) the
reconstructed image with common PIE method; (d) the
reconstructed image with our suggested method.

Fig. 4. Experimental results. (a)–(c) Phase and (d)–(f) corre-
sponding intensity imagereconstructions with,

���������
I�k�

p
, I�k� and

�
���������
I�k�

p
�3, respectively.
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Many samples used in the electron or x-ray microscopy
are weakly scattering objects, and the reconstructions al-
ways suffer from the low image quality. In pursuit of bet-
ter image contrast for PIE or the other CDI techniques in
imaging weakly scattering objects, an optical setup for
the data recording and a corresponding algorithm for
the image reconstruction is proposed in this paper. The
strength of the diffraction beam is doubled compared to
the common algorithms being used in CDI techniques,
and the image contrast is obviously enhanced. The result
of this paper explains a phenomenon that has confused
the researchers for many years: even though the CDI ima-
ging theory requires using the square root of the recorded
data, in practical experiments of x-ray imaging, a recon-
struction with �

���������
I�k�

p
�n can have better contrast for

some cases [13]. Here n can be 1.2, 1.3, or other values
a little greater than 1.0. This paper explains the underly-
ing physics of such a reconstruction thereby enhancing
the visual information on the specimen to a great extent.
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